Réseaux bayésiens
Description
Modèles de connaissances pour l'aide à la décision, le diagnostic ou le contrôle de systèmes complexes
Technique mathématique combinant statistiques et intelligence artificielle, les réseaux bayésiens permettent d'analyser de grandes quantités de données pour en extraire des connaissances utiles à la prise de décision, contrôler ou prévoir le comportement d'un système, diagnostiquer les causes d'un phénomène, etc.
Les réseaux bayésiens sont utilisés dans de nombreux domaines : santé et environnement (localisation de gènes, diagnostic, gestion des ressources naturelles), industrie et transports (contrôle d'automates et de véhicules), informatique et réseaux (agents intelligents), marketing (data mining, gestion de la relation client), management (aide à la décision, analyse financière, gestion des risques), etc.
Fondements théoriques, méthodologie de mise en oeuvre, études de cas et panorama des outils
Après une première partie de présentation "intuitive" des réseaux bayésiens accompagnée d'exercices, la deuxième partie du livre en expose les fondements théoriques, avec une étude détaillée des algorithmes les plus importants. Résolument pratique, la troisième partie de l'ouvrage propose une méthodologie de mise en oeuvre, un panorama des domaines d'application, six études de cas détaillées, ainsi qu'une présentation des principaux logiciels de modélisation de réseaux bayésiens (Bayes Net Toolbox, BayesiaLab, Hugin, Netica et Elvira).
À qui s'adresse l'ouvrage ?
Aux ingénieurs, informaticiens, industriels, biologistes, économistes confrontés à des problèmes d'analyse de données, d'aide à la décision, de gestion des connaissances, de diagnostic ou de contrôle de systèmes.
Aux étudiants en mathématiques appliquées, algorithmique, économie, recherche opérationnelle, gestion de production, automatique, etc.
Au sommaire
Introduction aux réseaux bayésiens. Approche intuitive,
Introduction aux algorithmes : inférence, apprentissage...
Exercices corrigés
Cadre théorique et présentation détaillée des algorithmes,
Modèles
Propagations
Apprentissage
Méthodologie de mise en oeuvre et études de cas,
Mise en oeuvre des réseaux bayésiens
Panorama des applications
Étude de cas n°1 : gestion des risques (EDF)
Étude de cas n°2 : risques bancaires et mise en oeuvre des accords de Baie
Étude de cas n°3 : modélisation du réseau électrique de la région PACA (EDF)
Étude de cas n°4 : application de scoring pour la vente de crédit en ligne
Étude de cas n°5 : gestion de ressources naturelles
Étude de cas n°6 : diagnostic médical.
Annexes. Théorie des graphes,
Rappels de probabilités
Outils logiciels : Bayes Net Toolbox, BayesiaLab, Hugin, Netica et Elvira
Détails
Auteur: Patrick Naïm, Pierre-Henri Wuillemin, Philippe Leray, Olivier Pourret
Editeur: Eyrolles
Collection: Algorithmes
Format: Broché
Presentation: Broché
Date de parution: 15 Novembre 2007
Nombre de pages: 426
Dimensions: 17 x 23 x 3,4
Prix publique: 45,60 €
Information complémentaires
Classification: Techniques et Sciences appliquées
Code Classification: 3069
EAN-13: 9782212119725
Où trouver ce livre:
(Liste non exhaustives de librairies ayant ce livre en stock. Vous êtes un professionel du livre et souhaitez figurer sur cette carte ? Contactez nous ! )
Vous pouvez également vous raprochez d'une librairie proche de chez vous: