Le Deep Learning pour le traitement d’images - Classification, détection et segmentation avec Python

Le Deep Learning pour le traitement d’images - Classification, détection et segmentation avec Python - Daphné WALLACH

Description

Cet ouvrage s’adresse à toutes les personnes désireuses de comprendre et développer des applications de traitement d’images basées sur le deep learning. Il fournit non seulement une base théorique solide, mais également des informations très pratiques, des « trucs et astuces » et des exemples sous forme de scripts Python basés sur TensorFlow. Après une introduction à l'intelligence artificielle, le matériel et les logiciels nécessaires à sa pratique sont détaillés. Suivent ensuite des explications progressives des réseaux de neurones convolutionnels, en décrivant tout d’abord les classifieurs linéaires, puis les réseaux de neurones profonds, et enfin les réseaux convolutionnels. Ces trois chapitres sont accompagnés de scripts Python utilisant TensorFlow, et suivis d’astuces pour améliorer la performance et limiter les biais potentiels du réseau et l’impact carbone lié à son apprentissage et son utilisation. L'apprentissage par transfert, qui consiste à adapter un réseau pré-entraîné à une nouvelle tâche, est ensuite présenté, et accompagné d’un exemple basé sur TensorFlow. Les chapitres suivants décrivent les réseaux convolutionnels appliqués à d'autres tâches que la classification, comme la détection et la segmentation. Ces chapitres sont accompagnés de scripts présentant l’utilisation des bibliothèques TensorFlow Object Detection et de l'architecture Unet. Le lecteur trouve une description de plusieurs méthodes permettant de visualiser le fonctionnement du réseau et d’améliorer son explicabilité, puis cet ouvrage explique pourquoi surveiller les performances d’un modèle après son déploiement, et comment organiser une telle surveillance en pratique. Le script accompagnant ce chapitre décrit le fonctionnement de la librairie tf_explain, qui implémente plusieurs des méthodes présentées. Vient ensuite un exposé des critères définis par la Commission européenne pour juger qu’un modèle d'intelligence artificielle est ""responsable"", et une traduction de ces critères en bonnes pratiques à adopter lors du développement et du déploiement. Enfin, le livre conclut avec des conseils pour améliorer vos compétences et vous tenir au courant des évolutions récentes dans le domaine de l'apprentissage profond appliqué au traitement d'images.

Détails

Auteur: Daphné WALLACH

Editeur: ENI (Editions)

Collection: Expert IT

Format: Broché

Presentation: Broché

Date de parution: 10 Janvier 2024

Nombre de pages: 536

Dimensions: 17,8 x 21,6 x 2,7

Prix publique: 45,00 €

Information complémentaires

Classification: Informatique

Code Classification: 3193

EAN-13: 9782409043208

Où trouver ce livre:


rechercher les librairies ayants ce livre en stock
Chargement de la carte interactive ...


(Liste non exhaustives de librairies ayant ce livre en stock. Vous êtes un professionel du livre et souhaitez figurer sur cette carte ? Contactez nous ! )

Vous pouvez également vous raprochez d'une librairie proche de chez vous:

    Dans la même catégorie

    Du même éditeur