Problèmes classiques en théorie des équations aux dérivés partielles
Description
Ce cours d'analyse est consacré à l'exposition d'un certain nombre de thèmes classiques en théorie des équations aux dérivées partielles et il s'adresse à des étudiants de master, des élèves en écoles d'ingénieurs ou à tous ceux qui désirent connaître cette partie importante des mathématiques. Ce travail part du théorème d'Existence et d'Unicité pour les solutions d'équations différentielles non-linéaires, aborde la résolution des équations scalaires linéaires du 1er ordre (la méthode employée est celle des courbes caractéristiques) et s'intéresse ensuite aux équations scalaires quasi-linéaires. La transformation de Fourier, présentée au chapitre 6, est très importante car elle permet de résoudre les équations à coefficients constants de la formeP(u) = F où P est un opérateur différentiel en (t, x). Les équations des ondes, de la chaleur et de Schrödinger sont toutes de ce type et font l'objet d'une résolution très détaillée au moyen de formules explicites. À la fin, on quitte le domaine des équations à coefficients constants pour celui des équations à coefficients variables. Les méthodes employées pour résoudre ces équations donnent lieu à des développements très importants et font largement partie du domaine de la recherche.
Détails
Auteur: Jacques Francheteau
Editeur: Hermann
Collection: METHODES
Format: Broché
Presentation: Broché
Date de parution: 29 Août 2009
Nombre de pages: 342
Dimensions: 15,6 x 23,4 x 1,8
Prix publique: 40,00 €
Information complémentaires
Numéro de série: 2
Classification: Sciences pures > Mathématiques
Code Classification: 3051 > 3052
EAN-13: 9782705668969
Où trouver ce livre:
(Liste non exhaustives de librairies ayant ce livre en stock. Vous êtes un professionel du livre et souhaitez figurer sur cette carte ? Contactez nous ! )
Vous pouvez également vous raprochez d'une librairie proche de chez vous: